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Analytical solutions are constructed for an assembly
of any finite number of bubbles in steady motion
in a Hele-Shaw channel. The solutions are given in
the form of a conformal mapping from a bounded
multiply connected circular domain to the flow region
exterior to the bubbles. The mapping is written as
the sum of two analytic functions—corresponding
to the complex potentials in the laboratory and
co-moving frames—that map the circular domain
onto respective degenerate polygonal domains. These
functions are obtained using the generalized Schwarz–
Christoffel formula for multiply connected domains
in terms of the Schottky–Klein prime function. Our
solutions are very general in that no symmetry
assumption concerning the geometrical disposition of
the bubbles is made. Several examples for various
bubble configurations are discussed.

1. Introduction
Many free boundary problems naturally arise from the
consideration of different types of Hele-Shaw systems.
A Hele-Shaw system is one where two viscous fluids
(typically with one fluid much less viscous than the
other) are sandwiched between two closely spaced
parallel plates so as to produce a flow that is essentially
two dimensional. Hele-Shaw flows in various geometries
have been extensively studied over the years, and
many processes in physics involving the evolution of
interfacial boundaries, such as dendritic crystal growth,
direct solidification and fluid displacement in porous
media, can be modelled mathematically (under certain
assumptions) as a free boundary problem of the Hele-
Shaw type. This diverse array of free boundary problems
has a plethora of analytical solutions and a wide range

2014 The Author(s) Published by the Royal Society. All rights reserved.
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of mathematical methods can be used to solve them [1,2]. The models defining these free
boundary problems also go by the name of Laplacian growth processes [3] because the governing
field equation in the viscous fluid region is Laplace’s equation and the evolution of the fluid
interfaces is governed through surface derivatives of this field. In the case of Hele-Shaw bubbles,
the flow is governed by Darcy’s law and the bubble interfaces evolve with a velocity proportional
to minus the local gradient of the fluid pressure.

In this paper, we present a general analytical solution for the problem of multiple bubbles
steadily translating along a Hele-Shaw channel when surface tension effects on the bubble
boundaries are neglected. The mathematical problem to be solved belongs to a class of free
boundary problem defined in a multiply connected domain which is related to a special class
of scalar Riemann–Hilbert problem [4] recently considered by Crowdy [5]. Here, however, we
shall use a more direct approach which allows us to reduce our original free boundary problem
to two fixed boundary problems that can be more easily solved. More specifically, we introduce a
conformal mapping from a circular domain in an auxiliary complex ζ -plane to the physical flow
domain (i.e. the exterior of the bubbles bounded by the channel walls) in the complex z-plane
and show that this mapping can be written as the sum of two analytic functions, corresponding
to the complex potentials in the laboratory frame and in the co-moving frame, respectively. Each
one of these functions maps the circular domain onto a multiply connected degenerate polygonal
domain and hence can be constructed using a variation of the generalized Schwarz–Christoffel
mapping for multiply connected domains recently obtained by Crowdy [6,7] in terms of the
Schottky–Klein prime function. Our final expression for the conformal map revealing the bubble
shapes will be given as an explicit indefinite integral whose integrand consists of products of
Schottky–Klein prime functions and their derivatives.

There are several prior results pertaining to steady multiple bubbles in Hele-Shaw systems
which we wish to survey to motivate the free boundary problem considered in this paper. An
important assumption that is made in each of these works is the exclusion of surface tension
effects. From a theoretical standpoint, this makes the problem analytically tractable and allows
for exact solutions to be found. Taylor & Saffman [8] found an exact solution for a single bubble
in a channel with reflectional symmetry about the channel centreline. Tanveer [9] was able to
generalize this solution using elliptic function theory to describe a single asymmetric bubble in
the channel. Vasconcelos [10] reported exact solutions for a finite number of steadily translating
bubbles in a Hele-Shaw channel. He considered symmetrical bubble shapes and, by reducing
the problem to a simply connected flow domain, was able to derive Schwarz–Christoffel-type
formulae for the conformal mappings determining the bubble interfaces. Adopting a similar
approach, Silva & Vasconcelos [11] have found exact solutions for a doubly periodic array of
multiple symmetrical bubbles, with Schwarz–Christoffel methods again proving to be fruitful.
Exploiting symmetry arguments, Vasconcelos [12,13] has also found families of exact solutions
for various infinite streams of bubbles in the Hele-Shaw system. If symmetry is not enforced in
configurations with multiple bubbles, the flow domain is inherently multiply connected, making
the problem more mathematically challenging. Indeed, only a few exact solutions are known for
Hele-Shaw flows in multiply connected regions, mostly for doubly connected cases. For instance,
the Tanveer solution [9] for one asymmetric bubble involves conformal mappings between doubly
connected domains. More recently, Silva & Vasconcelos [14] obtained a solution for a stream
of asymmetric bubbles in a Hele-Shaw channel by deploying the Schwarz–Christoffel formula
for doubly connected regions. A few exact solutions for doubly connected time-dependent
Hele-Shaw flows have also been obtained [15–18].

Most relevant to our present free boundary problem is the work of Crowdy [19] who found
analytical solutions determining the shapes of any finite number of steadily translating bubbles in
an unbounded Hele-Shaw cell. He derived analytical expressions for both the complex potential
and the conformal map from a bounded multiply connected circular domain to the exterior
of the bubble assembly by using the Schottky–Klein prime function. The solutions presented
herein can be viewed as the generalization to the channel geometry of the solutions found by
Crowdy [19] for multiple bubbles in an unbounded Hele-Shaw cell. Our solutions thus account
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for the effect of the two channel walls, which greatly influence the nature of the free boundary
problem. An earlier attempt at solving this problem was made by Crowdy [20] by introducing
two different Schottky groups and their associated Schottky–Klein prime functions, but it was
subsequently found that the construction of the second Schottky group was not entirely correct
(DC Crowdy 2011, personal communication). Herein, the problem is solved by employing the
generalized Schwarz–Christoffel formula. The results reported here give the complete set of
solutions for a finite number of bubbles steadily moving in a Hele-Shaw channel, in the sense that
for any given set of physical parameters, namely the velocity, areas and centroids of the bubbles,
specifying a bubble configuration, the corresponding solution can in principle be obtained from
our general formulae.

2. Problem formulation

(a) The complex potentials
We consider the problem of M finite-area bubbles translating uniformly with speed U parallel to
the x-axis in a Hele-Shaw channel filled with an incompressible viscous fluid. Without the loss of
generality, we will assume that the Hele-Shaw channel has a width equal to 2 and that the viscous
fluid (outside the bubbles) has a uniform speed V = 1 in the far field; see figure 1 for a schematic.
Our model will be centred around some simplifying assumptions in order to render the problem
analytically tractable. We shall assume that the fluid inside the bubbles (say, air) has negligible
viscosity so that the pressure inside each bubble is constant. We also neglect surface tension effects
so that the viscous fluid pressure will have a constant value on each bubble boundary. We assume
furthermore that the Hele-Shaw channel is horizontally placed so that the effects of gravity can
be neglected. Finally, we shall neglect three-dimensional thin film effects.

Under the assumptions above, the motion of the viscous fluid in our Hele-Shaw channel is
governed by Darcy’s law

v = ∇φ, (2.1)

where the velocity potential φ(x, y) is given by

φ = − b2

12μ
p. (2.2)

Here, v is the averaged fluid velocity across the channel, p is the viscous fluid pressure, b is the
gap between the plates andμ is the fluid viscosity. From the incompressibility condition, ∇ · v = 0,
it follows that φ satisfies Laplace’s equation, ∇2φ = 0. It is therefore natural to formulate the free
boundary problem to be solved in the complex z-plane, where z = x + iy.

Let us thus introduce the complex potential, w(z), defined by

w(z) = φ(x, y) + iψ(x, y), (2.3)

where ψ is the stream function associated with the velocity potential φ. As the viscous fluid is
assumed to have unit speed in the far field, it follows that

w(z) ≈ z for |x| → ∞. (2.4)

We shall label the viscous fluid region by Dz and the boundary of the jth bubble by ∂Dj,
j = 1, . . . , M (figure 1). Apart from a simple pole at infinity, the complex potential w(z) is analytic
everywhere in the viscous fluid region Dz and must satisfy the following boundary conditions:

Im[w(z)] = ±1 for y = ±1 (2.5)

and
Re[w(z)] = constant for z ∈ ∂Dj. (2.6)

Condition (2.5) simply states that the channel walls, y = ±1, are streamlines of the flow, whereas
(2.6) follows from the fact that pressure p is constant on each bubble boundary. From conditions
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Figure 1. Schematic of a Hele-Shaw channel of width 2 containing an assembly of bubbles steadily translating with constant
velocity U parallel to the x-axis. The far-field fluid velocity is assumed to be V = 1, and the shapes of the bubble boundaries are
to be determined. (Online version in colour.)
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Figure 2. Schematic showing the flow domains in thew-plane (a) and in the τ -plane (b), representing the complex potentials
in the laboratory and co-moving frames, respectively. The slits in both cases correspond to the bubbles in figure 1. (Online version
in colour.)

(2.5) and (2.6), one sees that the flow domain in the complex potential w-plane consists of a
horizontal strip of width 2 with M vertical slits in its interior, where each slit corresponds to
a bubble in the z-plane (figure 2a).

Let us also introduce the function τ (z) corresponding to the complex potential in a frame of
reference co-travelling with the bubbles

τ (z) = w(z) − Uz. (2.7)

From (2.4) and (2.7), one immediately sees that the far-field behaviour of τ (z) is

τ (z) ≈ (1 − U)z for |x| → ∞, (2.8)

which implies the following boundary conditions for τ (z) on the channel walls

Im[τ (z)] = ±(1 − U) for y = ±1. (2.9)
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Figure 3. The circular domain Dζ in the auxiliary complex ζ -plane. The case of a triply connected domain is illustrated, to be
conformally equivalent to the physical domain in figure 1. The unit circle |ζ | = 1 maps to the channel walls, with ζ = ±1
being the preimages of x = ±∞ (the ends of the channel), respectively, and the circles Cj , j = 1, 2, map to the boundaries
of the bubbles ∂Dj . (Online version in colour.)

Furthermore, in the co-travelling frame the bubble boundaries are necessarily streamlines of the
flow, thus

Im[τ (z)] = constant for z ∈ ∂Dj. (2.10)

It then follows from (2.9) and (2.10) that the flow domain in the τ -plane is a horizontal strip of
width 2(U − 1) with horizontal slits in its interior corresponding to the bubbles (figure 2b).

(b) The conformal mapping
In order to determine the shapes of the bubbles, we shall construct the conformal map z(ζ )
from a bounded M + 1 connected circular domain Dζ to the M + 1 connected fluid region Dz

exterior to M bubbles in the z-plane. We choose Dζ to be the unit circle ζ -disc with M smaller
non-overlapping discs excised from it. Label the unit circle by C0 and label the M inner circular
boundaries as C1, . . . , CM, and let the centre and radius of Cj be δj and qj, respectively. A schematic
of Dζ is shown in figure 3 in the case where M = 2 (triply connected). Let the unit circle C0 map
to the channel walls and the interior circles C1, . . . , CM, to the bubble boundaries ∂D1, . . . , ∂DM,
respectively. This implies that the mapping function z(ζ ) will necessarily have two logarithmic
singularities on C0. By the degrees of freedom afforded by the Riemann–Koebe mapping theorem
[21], we can place these logarithmic singularities at ζ = ±1.

Let us define the functions W(ζ ) and T(ζ ) through the following compositions:

W(ζ ) = w(z(ζ ))

and

T(ζ ) = τ (z(ζ )).
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These functions must be analytic in the circular domain Dζ and satisfy appropriate boundary
conditions on the circles Cj, as discussed next. From conditions (2.5) and (2.6), it follows that W(ζ )
must be such that

Im[W(ζ )] = ±1, ζ ∈ C0, (2.11)

and
Re[W(ζ )] = constant, ζ ∈ Cj, j = 1, . . . , M. (2.12)

Similarly, for T(ζ ) one has from (2.9) and (2.10) that

Im[T(ζ )] = ∓1, ζ ∈ C0, (2.13)

and
Im[T(ζ )] = constant, ζ ∈ Cj, j = 1, . . . , M. (2.14)

In (2.11) and (2.13), the upper and lower signs correspond to the upper and lower semicircles on
the unit circle, respectively.

Now, from (2.7) it follows that the mapping function z(ζ ) can be written as

z(ζ ) = 1
U

[W(ζ ) − T(ζ )]. (2.15)

We have thus reduced our original free boundary problem to the more manageable task of
computing two analytic functions, W(ζ ) and T(ζ ), that map the circular domain Dζ to multiply
connected slit domains which can be viewed as degenerate polygonal domains. These functions
can then be readily obtained using a generalized Schwarz–Christoffel mapping for multiply
connected polygonal domains, which is briefly reviewed in §3.

3. Generalized Schwarz–Christoffel mapping
Consider the function z(ζ ) defined on the circular domain Dζ by the following expression:

zζ (ζ ) =B [ωζ (ζ , 1)ω(ζ , −1) − ωζ (ζ , −1)ω(ζ , 1)]∏M
j=1 ω(ζ , γ (j)

1 )ω(ζ , γ (j)
2 )

M∏
j=0

nj∏
k=1

[ω(ζ , a(j)
k )]β

(j)
k , (3.1)

where B is a complex constant and ω(ζ , γ ) is the Schottky–Klein prime function associated with
the domain Dζ . For a definition of the Schottky–Klein prime function and a discussion of some of
its properties, see, e.g. Crowdy [6]. The Schottky–Klein prime function has deep connections with
Riemann surface theory [22], but for the purposes of this paper it suffices to think of it as a special
computable function [23].

It is shown elsewhere [24] that the function defined in (3.1) conformally maps the circular
domain Dζ onto a bounded (M + 1)-connected polygonal domain in the z-plane, where the
unit circle C0 is mapped to the outer boundary polygon P0 and the interior circles C1, . . . , CM

are mapped to the inner polygonal boundaries Pj, j = 1, . . . , M, respectively. The points a(j)
k ∈

Cj, k = 0, 1, . . . , nj, are the preimages of the vertices z(j)
k on polygon Pj, with πβ

(j)
k being the

corresponding turning angles so that the internal angle at the respective vertex is πα(j)
k = π

(β(j)
k + 1), with α

(j)
k ∈ [0, 2]. The outer polygon can have one or more vertices at infinity, i.e.

|z(0)
k | = ∞, for some k, in which case α(0)

k ∈ [−2, 0] because the angle is measured with respect
to the variable 1/z for z → ∞. Inner polygons are also allowed to degenerate to line segments
(i.e. slits).

The set of points {γ (j)
1 , γ (j)

2 ∈ Cj|j = 1, . . . , M} appearing in formula (3.1) are obtained by
computing the zeros (on each inner circle) of the following equation:

ωζ (ζ , 1)ω(ζ , −1) − ωζ (ζ , −1)ω(ζ , 1) = 0. (3.2)

This guarantees that the derivative zζ (ζ ) has no poles at the points ζ = γ
(j)
1 and ζ = γ

(j)
2 , so that

the only singularities of z(ζ ) in Dζ are the appropriate branch points at ζ = a(j)
k . Formula (3.1) is an
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alternative version of the generalized Schwarz–Christoffel mapping derived by Crowdy [6] that
is more convenient to treat multiply connected strip domains.

For later use, we quote here an important property of the Schottky–Klein prime function [6]:
the functions defined by

Fj(ζ ; ζ1, ζ2) = ω(ζ , ζ1)
ω(ζ , ζ2)

, ζ1, ζ2 ∈ Cj, j = 0, 1, . . . , M (3.3)

have constant argument on all circles Ck. More specifically, one has [24]

arg[Fj(ζ ; ζ1, ζ2)] = Qjk(ζ1, ζ2) for ζ ∈ Ck, k = 0, 1, . . . , M, (3.4)

where

Qjk(ζ1, ζ2) = π [vk(ζ1) − vk(ζ2) − vj(ζ1) + vj(ζ2)] + 1
2

(ϕ(j)
1 − ϕ

(j)
2 ). (3.5)

Here, the functions vj(ζ ), j = 1, . . . , M, are the M integrals of the first kind associated with the
domain Dζ . An algorithm for computing vj(ζ ) can be found in [23]. For convenience, we have

defined v0(ζ ) ≡ 0 and introduced the notation ϕ(j)
1 = arg(ζ1 − δj), with similar definition for ϕ(j)

2 .
In §4, we shall use generalized Schwarz–Christoffel formula (3.1) and property (3.4) to give an
explicit construction of the complex potentials W(ζ ) and T(ζ ) defined above.

4. The general solution

(a) The function T(ζ )
Recall that the mapping τ = T(ζ ) conformally maps the circular domain Dζ onto a strip domain
in the τ -plane where the unit circle C0 is mapped to the strip boundaries, Im[τ ] = ±(U − 1),
and the inner circles Cj are mapped to horizontal slits (figure 2b). This domain can alternatively
be viewed as a multiply connected degenerate polygonal domain, where the outer polygonal
boundary has only two edges that meet at Re[τ ] = ±∞ and the inner polygons degenerate to slits.
The corresponding turning angle parameters are therefore given by β(0)

1 = β
(0)
2 = −1 at the two

vertices at infinity and β(j)
1 = β

(j)
2 = 1, j = 1, . . . , M, at the endpoints of the slits. Following previous

notation, we label by a(0)
1 , a(0)

2 ∈ C0 the preimages in the ζ -plane of the endpoints of the τ -strip and

by a(j)
1 , a(j)

2 ∈ Cj, j = 1, . . . , M, the preimages of the slit endpoints. Now recall that the preimages
in the ζ -plane of the channel left and right ends (which correspond to Re[τ ] = ±∞) have been
chosen to be ζ = ∓1, and so we have a(0)

1 = −1 and a(0)
2 = 1. Applying the Schwarz–Christoffel

formula (3.1) to this case then yields

Tζ (ζ ) =B
[
ωζ (ζ , 1)ω(ζ , −1) − ωζ (ζ , −1)ω(ζ , 1)

ω(ζ , 1)ω(ζ , −1)

] M∏
j=1

ω(ζ , a(j)
1 )ω(ζ , a(j)

2 )

ω(ζ , γ (j)
1 )ω(ζ , γ (j)

2 )
. (4.1)

As discussed in §3, the points {γ (j)
1 , γ (j)

2 ∈ Cj|j = 1, . . . , M}, are obtained by computing the

solutions of (3.2). In this case, because the slits are all horizontal, one can select the points ζ = γ
(j)
1

and ζ = γ
(j)
2 to be the preimages of the slit endpoints [24], i.e.

γ
(j)
k = a(j)

k , j = 1, . . . , M, (4.2)

so that the terms in the numerator and in the denominator of the product appearing in (4.1) will
precisely cancel out. Hence, (4.1) simplifies to

Tζ (ζ ) =B
[
ωζ (ζ , 1)ω(ζ , −1) − ωζ (ζ , −1)ω(ζ , 1)

ω(ζ , 1)ω(ζ , −1)

]
, (4.3)

which upon integration becomes

T(ζ ) = 2(U − 1)
π

ln
[
ω(ζ , 1)
ω(ζ , −1)

]
, (4.4)
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where we have set B = 2(U − 1)/π to account for the fact that width of the strip in the τ -plane
is 2(U − 1) (figure 2b). It is worth noting that mapping (4.4) can be obtained directly from the
properties of the Schottky–Klein prime function (e.g. Crowdy [20]). It is instructive however to
demonstrate that it can be recovered from Schwarz–Christoffel mapping (3.1), as shown above.

(b) The functionW(ζ )
As discussed in §2a, the complex potential W(ζ ) maps the circular domain Dζ onto a multiply
connected domain in the w-plane consisting of a horizontal strip of width 2 with M vertical slits
in its interior, as shown in figure 2a. This slit strip domain is therefore of the same type as the flow
domain in the τ -plane discussed above, the only difference being that the slits are now vertical. Let

us then denote by {b(j)
1 , b(j)

2 ∈ Cj|j = 1, . . . , M} the set of preimages in the ζ -plane of the endpoints
of the slits in the w-plane. It should be clear from the preceding discussion that the function Wζ is
given by

Wζ (ζ ) = C
[
ωζ (ζ , 1)ω(ζ , −1) − ωζ (ζ , −1)ω(ζ , 1)

ω(ζ , 1)ω(ζ , −1)

] M∏
j=1

ω(ζ , b(j)
1 )ω(ζ , b(j)

2 )

ω(ζ , γ (j)
1 )ω(ζ , γ (j)

2 )
, (4.5)

where C is a complex constant. The modulus of C has to be chosen such that the width of
the strip in the w-plane equals 2; see below. On the other hand, the argument of C and the

parameters {b(j)
1 , b(j)

2 |j = 1, . . . , M} are determined from the requirement that C0 is mapped by W(ζ )
to horizontal straight lines and that the inner circles map to vertical slits, as shown next.

First, it is convenient to rewrite (4.5) in terms of the functions Fj(ζ ; ζ1, ζ2) defined in (3.3)

Wζ (ζ ) = C
[

d
dζ

log F0(ζ ; 1, −1)
] M∏

j=1

2∏
l=1

Fj(ζ ; b(j)
l , γ (j)

l ). (4.6)

The requirement that C0 is mapped by W(ζ ) to horizontal walls means that

Im
[

dW
dθ

]
= 0 for ζ = eiθ , (4.7)

which implies that arg[dW] = nπ , for some integer n, as one traverses an infinitesimal angle dθ
on the unit circle. This in turn implies from (4.6) and (3.4) that

arg[C] +
M∑

j=1

2∑
l=1

Qj0(b(j)
l , γ (j)

l ) = nπ , (4.8)

where Qjk(ζ1, ζ2) is given in (3.5). Similarly, the condition that the inner circles Ck are mapped to
vertical slits can be written as

Re
[

dW
dθ

]
= 0 for ζ = δk + qk eiθ , k = 1, . . . , M, (4.9)

which implies that arg[dW] = (m + 1/2)π , for some integer m, as one traverses an infinitesimal
angle dθ on the inner circle Ck. From this condition and (4.6), it follows that

arg[C] +
M∑

j=1

2∑
l=1

Qjk(b(j)
l , γ (j)

l ) =
(

m + 1
2

)
π , k = 1, . . . , M. (4.10)

Equations (4.8) and (4.10) give M + 1 conditions on the 2M + 1 parameters corresponding

to the argument of C and the points {b(j)
1 , b(j)

2 |j = 1, . . . , M}. The other set of M conditions
necessary to determine these parameters comes from the requirement that W(ζ ) be single-valued
in Dζ . This implies that a 2π -traversal around Cj should correspond to returning to the same point
on the jth vertical slit, i.e.

Im

[∮
Cj

Wζ (ζ ′) dζ ′
]

= 0, j = 1, . . . , M. (4.11)
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Thus, once the conformal moduli qj and δj are specified, the conditions (4.8), (4.10) and (4.11)
give 2M + 1 real equations which can be solved numerically to determine arg(C) and the points

{b(j)
1 , b(j)

2 |j = 1, . . . , M}. From a numerical viewpoint, however, working with equations (4.8) and
(4.10) is more cumbersome because one does not know a priori the values of the integers n and m
(which have to be found by trial and error). To circumvent this problem, we enforce boundary
conditions (4.7) and (4.9) on a particular point, say, θ = π/2, and then solve these equations,
together with (4.11), via a multivariate Newton’s method for root finding. (In the examples shown
in the next section, the corresponding accessory parameters were obtained using this method.)

The last parameter that needs to be determined is the modulus of the premultiplier C. This
is obtained from the requirement that the logarithmic singularities of W(ζ ) at ζ = ±1 have the
appropriate strength, so that the jump in W(ζ ) when crossing either of these singularities equals
2i, which corresponds to the channel width in the w-plane (figure 2a). The modulus |C| is then
found to be

|C| = 2
π

∣∣∣∣∣∣
M∏

j=1

ω(1, γ (j)
1 )ω(1, γ (j)

2 )

ω(1, b(j)
1 )ω(1, b(j)

2 )

∣∣∣∣∣∣ , (4.12)

where we have used thatω(ζ , γ ) = ζ − γ , as ζ → γ . This completes the construction of the function
Wζ (ζ ).

(c) Conformal map z(ζ )
In light of definition (2.15), the conformal map z(ζ ) that we seek will have the following integral
form:

z(ζ ) =A + 1
U

∫ ζ
ζ0

[Wζ (ζ ′) − Tζ (ζ ′)] dζ ′, (4.13)

where A ∈ C is a constant, ζ0 ∈ C is an arbitrary point inside Dζ and expressions for Tζ (ζ )
and Wζ (ζ ) are given in (4.3) and (4.5), respectively. Without the loss of generality, we can
set the bubble velocity to U = 2; it is demonstrated by Vasconcelos [10] that all other bubble
assemblies corresponding to different values of U can be obtained from the U = 2 solutions by
a simple rescaling.

Let us recall that we have used up two of the three degrees of freedom associated with the
Riemann–Koebe mapping theorem, namely, choosing ζ = ±1 to map to the channel ends. The
remaining degree of freedom can now be used to fix the value of the constant A. We are then
left with 3M free real parameters corresponding to the 3M conformal moduli of our circular
domain Dζ . Physically, these parameters correspond to the area and centroids for each of the
M bubbles. Once the 3M conformal moduli are prescribed, we can determine all other parameters

entering (4.13), namely, the set of points {γ (j)
1 , γ (j)

2 , b(j)
1 , b(j)

2 ∈ Cj| j = 1, . . .M} on the inner circles and
the premultiplier C, and thus a specific solution corresponding to a particular bubble assembly
is obtained. In §5, we illustrate the foregoing theory by considering some specific examples of
various bubble configurations.

5. Examples
Solutions for multiple steady bubbles that either are reflectionally symmetric about the channel
centreline or have fore-and-aft symmetry have been obtained by Vasconcelos [10] by reducing the
problem—on account of the symmetry—to a simply connected domain, and then applying
the standard Schwarz–Christoffel formula. These symmetric solutions are readily recovered in
our formalism by choosing circular domains Dζ with the appropriate symmetry: for bubbles
with centreline (fore-and-aft) symmetry, one must choose a domain Dζ that is symmetric with
respect to reflections about real (imaginary) axis. Figure 4 shows an example of two bubbles
whose centroids are aligned along the channel centreline and which are reflectionally symmetric
about it. In fact, we were able to successfully recover similar bubble shapes as in figure 4 using
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Figure 4. An example of two bubbles which are reflectionally symmetric about the channel centreline. Here, the conformal
moduli of Dζ are q1 = 0.17, q2 = 0.22, δ1 = 0 and δ2 = 0.6. (Online version in colour.)

–1.0

1.0

0.5

–0.5

–1.0

0

–0.5 0 0.5 1.0 1.5 2.0

Figure 5. An example of two bubbles in a general asymmetric configuration with a set of streamlines superposed in the frame
co-travelling with the bubbles. Here, the conformal moduli of Dζ are q1 = 0.2, q2 = 0.25, δ1 = 0.03i and δ2 = 0.6 + 0.15i.
(Online version in colour.)

the analytical solutions of Vasconcelos [10]. The formalism presented here is however much
more general is that it applies to arbitrary bubble configurations, i.e. with no imposed symmetry
a priori. Figure 5 shows an example of two asymmetric bubbles. Several streamlines of flow field
in the co-travelling frame have also been plotted—these streamlines provide a qualitative check
on the solutions. Streamlines are shown only for this case because they demand considerable
numerical work.

The versatility and generality of our method can be demonstrated through solving for
parameters yielding a larger number of bubbles in some asymmetric configuration. Figure 6
shows an example of the bubble shapes for a particular asymmetric assembly of three bubbles,
whereas figure 7 reveals the shape of the bubble boundaries in a particular four-bubble
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Figure 6. An example of three bubbles in a general asymmetric configuration. For this bubble assembly, the following
conformalmoduli of Dζ were picked: q1 = 0.18, q2 = 0.22, q3 = 0.195, δ1 = 0, δ2 = 0.6 + 0.23i, δ3 = 0.2 + 0.63i. (Online
version in colour.)

−1.0 −0.5 0 0.5 1.0 1.5
−1.0

−0.5

0

0.5

1.0

Figure 7. An example of four bubbles in a general asymmetric configuration. We chose the following conformal moduli of
Dζ : q1 = 0.19, q2 = 0.235, q3 = 0.2, q4 = 0.175, δ1 = 0, δ2 = 0.6 + 0.23i, δ3 = 0.2 + 0.63i, δ4 = 0.4 − 0.25i. (Online
version in colour.)

configuration. These assemblies are not symmetric about any axis and the bubbles in each
assembly all have different areas (corresponding to the different choices of qj values). Solutions
for a higher number of bubbles can be treated in a similar manner but the numerical computation
of the parameters becomes increasingly more expensive.
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In each of the figures 4–7, the interaction between the bubbles themselves, and between
the bubbles and the channel walls, is clearly visible from the shapes of their boundaries. As
specified in the respective figure captions, we have made particular choices of the conformal
moduli defining Dζ in order to find the finite set of accessory parameters in our conformal map
determining the bubble shapes. Alternatively, we could have specified the areas and the centroids
of each of the individual bubbles and solved for the conformal moduli of Dζ . However, this would
have been a rather challenging numerical undertaking, owing to the fact that the parameters

{γ (j)
1 , γ (j)

2 ∈ Cj| j = 1, . . . , M} (the set of preimages of the endpoints of the M horizontal slits in the
τ -plane) would need to be calculated on each iterative step.

6. Discussion
We have presented analytical solutions to the free boundary problem of determining the interface
shapes of a finite number M of bubbles steadily translating along a Hele-Shaw channel. To do this,
we found a concise formula in the form of an explicit indefinite integral for the conformal map
from a bounded (M + 1)-connected circular domain to the fluid region in the channel exterior to
the M bubbles. The integrand of this indefinite integral is neatly expressed in terms of products of
Schottky–Klein prime functions and their derivatives, and is known up to a finite set of accessory
parameters to be found as part of the solution.

Our formula for the conformal map determining the bubble shapes is very general and
makes no a priori symmetry assumptions concerning the geometrical arrangement of the bubbles.
Indeed, all the geometrical information about the physical domain is encapsulated in the
prescription of the preimage domain Dζ over which each of the Schottky–Klein prime functions
appearing in (4.13) is defined. In previous works on steady bubbles in a Hele-Shaw channel,
symmetry had to be enforced in order to make progress. Solutions for a single bubble with
centreline symmetry were first found by Taylor & Saffman [8]. These solutions were later
extended by Tanveer [9] to include asymmetric bubbles; an alternative derivation of the Tanveer
solutions was subsequently given by Combescot & Dombre [25] using Riemann–Hilbert methods.
A general class of exact solutions for multiple steady bubbles with either centreline or fore-
and-aft symmetry were obtained by Vasconcelos [10] by reducing the problem—on account of
symmetry—to a simply connected flow domain. Our solution scheme readily incorporates the
solutions found in these works, and so these solutions can be viewed as special cases of ours.
It also generalizes the solutions for multiple bubbles in an unbounded Hele-Shaw cell obtained
by Crowdy [19] by including the effect of the channel walls. Indeed, it is possible to retrieve
the solutions of Crowdy [19] from those presented here by taking the limit as the channel width
becomes infinite. This can be accomplished in our formalism by choosing a circular domain Dζ

where an inner circle is mapped to the channel walls (with the unit circle mapped to one of the
bubbles) and then taking the radius of this inner circle to zero, but we have not pursued this
detail here.

In conclusion, we have devised a constructive method for finding solutions to the free
boundary problem of multiple bubbles (with no assumed symmetry) in a Hele-Shaw channel.
The crucial step in our scheme was to represent the conformal mapping from a circular domain
to the physical flow region as a sum of two analytic functions that map the circular domain to
multiply connected degenerate polygonal domains. These analytic functions, which correspond
to the complex potentials in the laboratory and moving frames, were then obtained from the
generalized Schwarz–Christoffel formula for multiply connected domains in terms of Schottky–
Klein prime functions. We considered examples of various bubble assemblies, demonstrating that
our solution scheme is capable of modelling any finite number of bubbles in a particular assembly.

An interesting extension of this work would be to consider a doubly periodic array
of asymmetric bubble assemblies. This, in turn, would generalize the solutions of Silva &
Vasconcelos [11] for a doubly periodic array of symmetric bubbles. It is worth noting that
an exact solution for an asymmetric stream of bubbles (with one bubble per unit cell) in a

 on January 8, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/


13

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130698

...................................................

Hele-Shaw channel was recently found by Silva & Vasconcelos [14] using conformal mapping
between doubly connected domains. It is possible to extend these solutions using the ideas
presented in this paper to include a periodic assembly of bubbles with multiple asymmetric
bubbles per unit cell; work is currently in progress in this direction. Another interesting line
of enquiry would be to investigate the effects of surface tension on the bubble boundaries.
This gives rise to the so-called selection problems: for non-zero surface tension, there is no
longer a continuum of bubble velocities for which solutions can exist, and so only a discrete
set of velocities are allowed. It is also important to point out that obtaining exact analytical
solutions for steady Hele-Shaw systems naturally paves the way to finding time-dependent
solutions which are also of great physical and mathematical interest. An example of the extension
of the steady theory to the time-dependent case is the recent study by Vasconcelos & Mineev-
Weinstein [18], who have been able to determine an exact solution without surface tension for
the time evolution of a bubble of arbitrary initial shape using conformal mappings between
doubly connected domains. These authors demonstrated that the solution with U = 2 is the only
attractor for the non-singular solutions, thus showing that selection is inherently determined
by the zero surface tension dynamics. They also conjectured [18] that a similar scenario holds
in domains of arbitrary connectivity. Our new solutions—in terms of Schottky–Klein prime
functions for multiply connected circular domains—should therefore serve as a starting point
for future endeavours looking into constructing time-dependent solutions for multiple bubbles
in a Hele-Shaw channel, from which the general selection problem can hopefully be addressed.
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